Applied and Computational Mathematics Division Computing and Applied Mathematics Laboratory an Interior-point Method for General Large-scale Quadratic Programming Problems an Interior-point Method for General Large Scale Quadratic Programming Problems *
نویسندگان
چکیده
In this paper we present an interior point algorithm for solving both convex and nonconvex quadratic programs. The method, which is an extension of our interior point work on linear programming problems, efficiently solves a wide class of large scale problems and forms the basis for a sequential quadratic programming (SQP) solver for general large scale nonlinear programs. The key to the algorithm is a 3-dimensional cost-improvement subproblem, which is solved at every iteration. We have developed an approximate recentering procedure and a novel, adaptive big-M Phase I procedure that are essential to the success. We describe the basic method along with the recentering and big-M Phase I procedures. Details of the implementation and computational results are also presented.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملObject Library of Algorithms for Dynamic Optimization Problems: Benchmarking SQP and Nonlinear Interior Point Methods
The main purpose of this paper is to describe the design, implementation and possibilities of our object-oriented library of algorithms for dynamic optimization problems. We briefly present library classes for the formulation and manipulation of dynamic optimization problems, and give a general survey of solver classes for unconstrained and constrained optimization. We also demonstrate methods ...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملA Practical Algorithm for General Large Scale Nonlinear Optimization Problems
We provide an eeective and eecient implementation of a sequential quadratic programming (SQP) algorithm for the general large scale nonlinear programming problem. In this algorithm the quadratic programming subproblems are solved by an interior point method that can be prematurely halted by a trust region constraint. Numerous computational enhancements to improve the numerical performance are p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996